- 1. Which of these units would create a larger Security Zone?
 - a. 5 cm
 - b. 5 inches
 - c. .5 cm
 - d. .5 inches
- 2. Which of these units would make the sensor go off close to your Piper Computer in the Security Zone project?
 - a. 5 cm
 - b. 5 inches
 - c. .5 cm
 - d. .5 inches
- 3. How did speed affect your Security Zone?
 - a. Going at a faster speed made the zone smaller.
 - b. Going at a slower speed made the zone larger.
 - c. Going at a faster speed made the zone larger.
 - d. The speed doesn't affect the size of the zone.
- 4. How can you convert from cm to in?
 - a. Multiply by 2.54
 - b. Divide by 2.54
 - c. Add 2.54
 - d. Subtract 2.54
- 5. How do you convert from in to cm?
 - a. Multiply by 2.54
 - b. Divide by 2.54
 - c. Add 2.54
 - d. Subtract 2.54
- 6. How does your Security Zone work?
 - a. The speed of an object sets off a sensor.
 - b. The distance of an object sets off a sensor.
 - c. The sensor detects speed.
 - d. The sensor detects an object at a certain distance and sets off an alarm.
- 7. What logic blocks did you use when programming your Range Finder?
 - a. If, do, else
 - b. If, do
 - c. When, do
 - d. Else if
- 8. Why do you set a parameter when programming your sensor?
 - a. To tell the alarm when to go off.
 - b. To determine the size of the Security Zone.
 - c. To set a distance for which an object cannot cross.

Range Finder Lesson 3 Summative Assessment

- d. All of the above.
- 9. What do the pins control?
 - a. The pins control the sound of the alarm.
 - b. The pins control the strength of the sensor.
 - c. The pins control when the alarm goes off.
 - d. The pins control the sensors ability to talk to the computer.
- 10. How do we use data to test our code?
 - a. The data tells us the measured distance an object is located from the sensor.
 - b. The data helps us test the distance provided by the code.
 - c. The data tells us how the sensor works.
 - d. The data allows tells us what needs to be included in our code.