
Name: ___________________

Assessment
Frog Frenzy

1) How does the controller communicate which buttons are pressed to the Pico?
a) It sends an analog signal directly to the Pico
b) It uses a shift register to send bits representing the button states
c) It stores the button states in memory and sends them all at once
d) It uses wireless communication to send the button states

2) What are the three pins used to connect the controller to the Pico?
a) Power, ground, signal
b) Input, output, control
c) Read, write, execute
d) Data, latch, clock

3) What is the purpose of the CLOCK pulse in the controller's communication process?
a) It resets the shift register
b) It powers the shift register
c) It initializes the controller connection
d) It sends the button states to the Pico in order, one bit at a time

4) How do you ensure the player's character stays within the console boundaries when
moving up?

a) By using a delay block
b) By changing the controller's buttons
c) By using a constrain block
d) By printing the score

5) Which variable determines the horizontal position of the player character?
a) player x
b) food x
c) enemy x
d) player y

6) Imagine you are designing a different game using the same controller and Pico.
Describe the basic idea of your game and how you would use the controller to interact
with the game. Include at least two ways you would use the controller.

© 2024 Play Piper, Inc.

Name: ___________________

7) Think about how you can apply the controller and Pico setup you learned to a
real-world situation outside of gaming. Describe a potential application and how it
would work.

8) Look at the Python code you have created for your game. Currently, the enemymoves
at a constant speed of 0.5 units per game loop. Can you change the code so that the
enemy's speed increases by 0.1 units each time the player collects the food? Explain
what changes you made to the code and why.

© 2024 Play Piper, Inc.

Name: ___________________

Answer Key
Frog Frenzy

1) B - It uses a shift register to send bits representing the button states

2) D - Data, latch, clock

3) D - It sends the button states to the Pico one bit at a time

4) C - By using a constrain block

5) A - player x

6) Example: For my game, I would design a space adventure where the player controls a
spaceship navigating through an asteroid field. The controller would move the spaceship left,
right, up, and down to avoid incoming asteroids. Pressing the 'A' button on the controller
would allow the spaceship to shoot lasers to destroy the asteroids. The game's goal would be
to survive as long as possible and score points by destroying asteroids.

7) Example: One potential real-world application could be using the controller and Pico to
create a remote-controlled robot for search and rescue missions. The controller would allow
an operator to navigate the robot through dangerous or hard-to-reach areas. Buttons on the
controller could be programmed to operate different functions of the robot, such as
extending an arm to pick up objects, turning on a camera to send live video feed, or
activating sensors to detect hazards. This setup would enable rescuers to safely explore and
perform tasks in hazardous environments without putting themselves at risk.

8) Example:

import board
from piper_blockly import *
import time
import random

Initialize variables
player_x = None
enemy_x = None
player_y = None
score = None
enemy_y = None
food_x = None
food_y = None
enemy_speed = 0.5 # Added variable for enemy speed

© 2024 Play Piper, Inc.

Name: ___________________

Function to read controller input
def read_controller():
global player_x, enemy_x, player_y, score, enemy_y, food_x, food_y
buttons_pressed_value = piper_controller.readButtons()
if piper_controller.wasPressed(BUTTON_2):
player_y = min(max(player_y - 1, 0), 9)

if piper_controller.wasPressed(BUTTON_4):
player_y = min(max(player_y + 1, 0), 9)

if piper_controller.wasPressed(BUTTON_1):
player_x = min(max(player_x - 1, 0), 15)

if piper_controller.wasPressed(BUTTON_3):
player_x = min(max(player_x + 1, 0), 15)

piper_controller = piperControllerPins(board.GP4, "GP4", board.GP2, "GP2",
board.GP3, "GP3")

try:
set_digital_view(True)

except:
pass

Function to move the enemy
def move_enemy():
global player_x, enemy_x, player_y, score, enemy_y, food_x, food_y, enemy_speed

Added enemy_speed
if enemy_x < player_x:
enemy_x = isNumber(enemy_x) + enemy_speed

elif enemy_x > player_x:
enemy_x = isNumber(enemy_x) + -enemy_speed

if enemy_y < player_y:
enemy_y = isNumber(enemy_y) + enemy_speed

elif enemy_y > player_y:
enemy_y = isNumber(enemy_y) + -enemy_speed

Function to print the game state
def print_game():
global player_x, enemy_x, player_y, score, enemy_y, food_x, food_y
consoleClear()
consolePosition(player_x, player_y)
print('O', end="")
consolePosition(food_x, food_y)
print('*', end="")
consolePosition((int(enemy_x)), (int(enemy_y)))
print('X', end="")
consolePosition(18, 5)
print('Score: ', end="")
print(score, end="")

Function to set up the game
def set_up_game():
global player_x, enemy_x, player_y, score, enemy_y, food_x, food_y, enemy_speed

© 2024 Play Piper, Inc.

Name: ___________________

Added enemy_speed
player_x = 0
player_y = 0
enemy_x = 15
enemy_y = 9
food_x = random.randint(0, 15)
food_y = random.randint(0, 9)

Function to check if player has reached the food
def check_food():
global player_x, enemy_x, player_y, score, enemy_y, food_x, food_y, enemy_speed

Added enemy_speed
if player_x == food_x and player_y == food_y:
score = isNumber(score) + 1
enemy_speed += 0.1 # Increase enemy speed
set_up_game()

Function to check if enemy has caught the player
def check_enemy():
global player_x, enemy_x, player_y, score, enemy_y, food_x, food_y
if player_x == (round(enemy_x)) and player_y == (round(enemy_y)):
score = isNumber(score) + -1
set_up_game()

Game loop
set_up_game()
score = 0
while True:
read_controller()
move_enemy()
check_enemy()
check_food()
print_game()

time.sleep(0.5)

Explanation:

1. I added a new variable enemy_speed initialized to 0.5.
2. I modified the move_enemy function to use enemy_speed instead of a constant 0.5.
3. I updated the check_food function to increase enemy_speed by 0.1 each time the

player collects the food.

© 2024 Play Piper, Inc.

